Negative answer
Before the question could be answered, the notion of "algorithm" had to be formally defined. This was done by Alonzo Church in 1936 with the concept of "effective calculability" based on his λ calculus and by Alan Turing in the same year with his concept of Turing machines. It was recognized immediately by Turing that these are equivalent models of computation.
The negative answer to the Entscheidungsproblem was then given by Alonzo Church in 1935–36 and independently shortly thereafter by Alan Turing in 1936. Church proved that there is nocomputable function which decides for two given λ calculus expressions whether they are equivalent or not. He relied heavily on earlier work by Stephen Kleene. Turing reduced the halting problem for Turing machines to the Entscheidungsproblem. The work of both authors was heavily influenced by Kurt Gödel's earlier work on his incompleteness theorem, especially by the method of assigning numbers (a Gödel numbering) to logical formulas in order to reduce logic to arithmetic.
Turing's argument is as follows. Suppose that we had a general decision algorithm for statements in a first-order language. The question whether a given Turing machine halts or not can be formulated as a first-order statement, which would then be susceptible to the decision algorithm. But Turing had proven earlier that no general algorithm can decide whether a given Turing machine halts.
The Entscheidungsproblem is related to Hilbert's tenth problem, which asks for an algorithm to decide whether Diophantine equations have a solution. The non-existence of such an algorithm, established by Yuri Matiyasevich in 1970, also implies a negative answer to the Entscheidungsproblem.
Some first-order theories are algorithmically decidable; examples of this include Presburger arithmetic, real closed fields and static type systems of many programming languages. The general first-order theory of the natural numbers expressed in Peano's axioms cannot be decided with such an algorithm, however.
See also
Look upentscheidungsproblem in Wiktionary, the free dictionary. |
No comments:
Post a Comment